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ABSTRACT

This report investigates a class of shape segmentation methods in
which, for each arc of the shape's contour, we consider the region bounded
by the arc and its chord; compute a simple geometrical property of this
region; and choose arcs for which this property's value is a local ex-
tremum. The characteristics of this approach are analyzed for several
such properties, and examples of the segmentations obtained in this way
are given. It is concluded that such methods will sometimes yield re-
sults that are not perceptually plausible.
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1. Introduction

Computer vision tasks frequently involve the segmentation of a shape

into parts [1]. Many methods of shape segmentation involve computing some

local property of the boundary, such as curvature, and selecting segmenta-

tion points based on this measure. One class of measures is obtained by

scanning a chord around the boundary, and measuring certain characteris-

tics of the chord and the piece of boundary (the arc) between its end-

points. For example, we could measure the ratio of arc length to chord

length:

The minimum value of this ratio is obviously 1, and this occurs when the

arc is a straight line. C takes on higher values in areas where the curve

has a sharp angle or is "busy," such as
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One fault of the measure S/C is its inability to distinguish between

a large, simple protrusion, such as a corner, and a series of small oscil-

lations or noise. Other measures, such as the enclosed area divided by

A
the square of the chord length (./C2), or the maximum perpendicular distance

between the arc and the chord divided by the chord length (D/ ), have also
C

been tried.

One property which all implementations of these methods have had in

common until now is that although a chord on the shape boundary is defined

by two parameters, some auxiliary condition has always been imposed to

reduce this to a one parameter problem. For example, one could specify

a fixed chord length or a fixed arc length. In this paper we have examined

the two parameter problem, in which both chord endpoints are arbitrary.

Thus we define a function of two variables, these being the chord endpoints,

and look for local minima or maxima of that function. The motivation for

this is provided by examples such as the shape below:

A
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We would expect a measure such as A/C2 to take on a locally maximum value

at the chord shown, which seems to be a reasonable segmentation despite

the absence of distinguishing local features, such as corners. One objec-

tive of this approach is to provide a segmentation which is based on global

rather than local shape properties.



2. Local extrema of A/C2

Consider a closed curve with an arbitrary starting point, Po (Figure 1).

We can define a directed chord by selecting two points, P1 and P2. Let s,

be the arc length from P0 to P1 measured counterclockwise around the curve,

and let s2 be the arc length from P0 to P2 measured in a clockwise direc-

tion. Opposite directions are used because of the resulting symmetry in

the equations. C is the length of the chord, and A the area enclosed by

the chord and the piece of curve (arc) which runs counterclockwise from

P1 to P2. Area to the right of the directed chord will be considered posi-

tive, and area to the left negative.

In the derivations which follow we will require several partial deriva-

tives. These are most easily obtained geometrically. Equations 1 to 4

should be clear from the geometry of Figures I and 2. Equation 5 is a bit

more difficult to see. When we change s, by an amount As,, there are two

effects which act together to change e. These are illustrated in Figure

2. If we let ki be the curvature (defined in the conventional way) at the

point i, then when we move a distance As I along the curve, the curve bends

A
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Figure 1.
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through an angle K,as1. e, however, is the angle between the tangent to

the curve and the chord, so we must also account for the angular change

due to our motion relative to point P2. This change is, to first order,

As, sin el/C. Thus we arrive at equation 5.

We are interested in finding local extrema of the function A/C2.

Specifically, we want to find positive local maxima (A>-O) and negative

local minima (A<O). Note that there is a symmetry between local maxima

and minima. If we reversed our convention of considering area to the

right of the directed chord as positive, then the local maxima would be-

come local minima and vice versa. Thus any segment of curve between the

endpoints of a chord will meet the criteria for a maximum iff its "minor

image" meets the conditions for a minimum (Figure 3).

A necessary condition for the function A/C2 to have a local extreme

value is that the first partial derivatives are zero:

( C) 2ACos i  L sin e8 = 0 which implies

Csi  C2

tan ei  4A, i = 1,2 (eq. 6)

The standard test for a local minimum or maximum of a function of two

variables is
th 2f

* 0 then 2 - 0 minimum

a 2 2 a2
aX a y, .x2 -yx < 0 =maximum (eq. 7)

< 0 then neither min nor max

= 0 undecided.



K+
local maximum

-A

local minimum

Figure 3.



Evaluating these derivatives at the stationary point:

a2 (A/J2) = a 1.L 4A cos 6 - sin e.)]=

asj as1i 2C CY

4A a(- i sine9.
(-. Cos e.i - sin e.) - L + - L 4 [..- -Cos e6 - )
F as1i 2C as1 CT as1i

A ae.
1 EAsi e le+Co e [4A ai c os e.l a(' 2

2C CF 6 as1  1 as1  2C CT 6 o as.

Substituting (eq. 6) yields:

4A sin e, + Cos e~ = tan e i sin e i + Cos 6. = __

F ~Cos a6.

000 a 2 A/c -l (sn.2k) e.8

as1  2C cos e. C 1 j e.8

Similarly,

a2(A/C2)_ a 1 4A co e - si el))]

a21 as 2  2C C

-1 ae, sin 6 2(e.9

2C cos 61I as 2  2C zCos 61

Substituting the second partial derivatives into (eq. 7):

sin_ e 1 sin e2  2r k )I I -k2)]---.-----2C cos e1 C 2C cos 6 2 C 2C cos6a



1sin eI sin e2  1 sin e2)2
1 [sin 61sine2 + klk -1k, sin e + ksin el)] - in e

4C2  ose 1  2 c 2 2 - 4C cos e1

Since we are interested only in the sign of this equation, we can factor out
I (si 6 2 a 2  si esil

a and note that since (eq. 6) implies (sin 62)2 = sin tn e1 2
4C Cos e Cos elCOS 62

so we obtain

Cos eI Cos e2 [klk 2 - (k, sin e2 + k2 sin (eq. 10)

We note that although (eq. 6) implies tan eI = tan 62, these two angles may

be either equal, or may differ by w radians. For the moment, let us consider
1

the case where e = e2 then letting 61 = 62 = a and factoring out a - -
the above equation becomes simply

kk 2  sin (kl+k2) (eq. 11)

Consider now the case in which e and 62 differ by i. Suppose sin e1

and cos e are > 0 (so sin and cos for e2 are < 0). If we let 6 = el ,

then (eq. 10) becomes

-1 [k k2 " -k sin 6 + k sin e)] or,

Cos 26 C 12

factoring out - 1

cosz e

k(-k 0--- [kI + (-k2)) (eq. 12)

Thus we get a result similar to (eq. 11) with -k2 in place of +k2. There

is a simple Intuitive justification for this. Clearly, the conditions for

a local max or min defined by (eq. 7) depend only on the value of A and C

and the local behavior of the curve at the endpoints of the chord. Consider



the two situations diagramed in Figure 4. Figure 3a, with 81 = 82, cor-

responds to the situation from which we derived (eq. 11). The curve dia-

gramed in Figure 4b has the same local behavior as the curve in 4a. It is

therefore not surprising that (eq. 12), which applied to 4b, has the same

form as (eq. 11) but with -k2 in place of +k2.

An interesting consequence of this analysis is that the function A/C2

has no local maximum on a shape whose curvature is everywhere positive.

Suppose a certain chord is assumed to yield a local maximum of A /C2;

We note that for any convex shape sin 6l, sin e2, and A must all be > 0.

Since at a stationary point tan ei  4A , we conclude that 81 = 82 and both

sin and cos of el and 02 are positive. Thus (eq. 11) applies here. If

kCk2 - _ (k1+k2) < 0, then there is neither a local minimum nor maximum.

If k1k2 - e k+k) > 0, then
C

klk 2 > sinek + sin k2
C C

k > sin e + sin kl sino
C C 2 C

32A sin e l

but k -sn--- kl) > 0
1k C as1  2C cos e C

so we have a local minimum (by eq. 7).

ifk1k sin (kI+k 2) = 0, then
C

k = sin o + sin i k > and again a2(A/c2) >0
C C C as

In this case we may or may not have a local minimum; we certainly do not

have a maximum.



(a)

(b)

Fi gure 4.



3. Behavior of A/C2 on polygons

A special case of interest is that of polygonal shapes. Consider a

chord connecting two corners of a polygon (Figure 5a). (Note that we can

include the case of the chord ending on the side of a polygon by considering

a "corner" with a 1800 angle.) In Figure 5b, the origin represents the

position of the chord in 5a, and the horizontal and vertical axes represent

displacements from P1 and P2' respectively. From this figure we can see

that the values of A/C2 are given by four different functions, one for each

quadrant. To see if the origin is a local extreme value, we can find an

expression for A(A /C2) for each of the four quadrants, and examine its sign.

Let Ai be a displacement in the direction of ei. (Figure 5c) Let Aij (A/c2)

be the change in A/C2 resulting from the displacement (ai,Aj). We can then

examine the sign of Aij for (ij) E {(1,2),(3,2),(3,4),(l,4)} as Ai and

Ai - 0. If the sign is always positive, the chord yields a local minimum,

if the sign is always negative we have a maximum.

In the case of a polygon, we can derive an exact expression for

Aij(A /C 2) (Figure 6). The equations in Figure 6 can be simplified to yield

A (A~ = 1 + iG .S A a si +
ij (A= -C(A i sin ei + ne) ij sin(e i  e.)

A 2 = 2 + - 2C(A cos . + Aj cos e.) + 2AiAj cos(e i + ej)

We wish to find

A A+Aij (A) A Aij (A)C2 A'A (C2

-/ C2+Aij(C2) " C7 C2 (C 2+ ij(C2))

Since the denominator will be positive as AiA j -o 0, we can restrict our at-

tention to the sign of the numerator

AIj(A),C 2 - A.(C2)-A
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2
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Figure 6.



To first order in Ai and aj, this is

".[2AC cos ei - L--sin iJ + a [2AC cos e sin ej

1 2 2

We will clearly have a local maximum if both coefficients of the deltas are

negative:

4Acos ei < sin ei and 4A cos e. < sin e.

The geometric consequences of this are illustrated in Figure 7, along with

the corresponding case for a local minimum. The coefficients of Ai and Aj

will be negative iff the sides of the polygon lie in the shaded region, as

Illustrated.

If either coefficient is positive, we have no local maximum. The only

remaining cases are when one coefficient is zero and the other negative,

or when both are zero. Suppose the coefficient of ai is zero, and that of

a is negative. If we consider a displacement from the origin (Figure 5b)

in any direction for which a is non-zero, then clearly as the magnitude of

the displacement goes to zero the first order terms will dominate, and

A( A/c2) will go negative. If we consider a displacement for which a= 0,
Athen the first order terms of aij /2) are all zero, and of the second

order terms, which are

-A(A2 + A2) + AiAj 1 2 sin(e. + a.) -2A cos(e. + e.)]
ii jA/c 2)

-A'2 A~ 1~~
only the term -A A remains, thus < 0. (Remember we want local

maxima for which A > 0.) Finally, if both coefficients are zero, we have

tan e = 4A and tan e = 4A



\, local max. A >0

4A4

/ local min A < 0

Figure 7.



There are then two possibilities. If = ej + i then we find

a~~ -/2 A(a2+A2) + A 1 [j2 sin(2@ +v) -2A cos(2e.+ft)]
_8A 2

and since sin(2e i ft) = -sin(2e.) = -2sine i cose i = -- COS ei

cos(2e1+1) = -cos(2ei) = l-2cos2eI

we find

Aij(A/C2) = -A( i A&) + AIA [-4A cos2ei-2A + 4A cos2ei]
A2+ 2 < )2

Aij(A/C2) = -A(A+)i  - 2A AAj = -A(Ai+A) < 

If 0= 0j we find a(A/C2 ) =--"A(A1+A2) + 2A A.A.. Since this yields

aij(A/C2) = 0 for Ai = Aj, we have no maximum. This result is intuitively

expected, as in this case C changes proportionately to Ai and Aj, and A

changes proportionately to A2 = 2

In summary, we will have no positive local maximum or negative minimum

iff:

i) any of the ek' k = 1,2,3,4 lie outside the range depicted in Figure 7,

or

ii) there is a pair (eoei),(i,j) E {(l,2),(3,2),(3,4),(l,4)} such that
ei -ej arcan 4A

61 X arctan (4. In Figure 7 this would correspond to two sides
C2

touching opposite ends of the chord, both of which lie along the dashed

lines, and both of which lie on the same side of the chord.

Observe that the above implies that we can never have a local maximum at a

chord for which both endpoints lie on sides of the polygon, but that it Is

possible to have a maximum at a chord with one endpoint on a corner and the

other endpoint on a side, if the side lies along the dashed line in Figure 7,

and neither angle of the corner is in the direction of the dashed line.



4. Other measures

a) A/C: Setting the first partial derivatives equal to zero for this
2A

function yields tan ai  - , i = 1,2. Applying the test involving second
C

derivatives (eq. 7) leads to a cumbersome expression.

The behavior of this function on a polygon is similar to the behavior

of A/C2 illustrated in Figure 7, except that the slope of the dashed lines

is given by 2A rather than 4A. The case in which the sides of the polygon7 7.C C Alie along the dashed lines has not been analyzed for /C.

b) S/, where S = arc length of the segment of curve cut off by the

chord.* Setting the first derivatives equal to zero and using 2_S = -l

(see Figure 1), we obtain cos ei = C/S, i 
= 1,2.

For the case of a polygon, we can carry out an analysis analagous to

that for A/C2. Referring to Figure 5, observe that movement along A or A2

decreases S, while movement along A3 or A4 increases S. Thus we must con-

sider several cases. Also, since AC would involve square roots, we will

consider A( 2/C2).

S2  A12(S
2)C2 "S2Al2(C

2) so we are interested in the sign of

2( /C2  C2(C2+&12 (C2 ))

A12(S
2)C2- S2A12 (C

2) (eq. 13)

A12(S ) = (S+AS) - S2 = 2S a S + (AS)
2 = 2S(-A 1-A2) + (Al+A 2)2

We find (considering the first order terms) that we will have a local maximum

if

Ccos 8 Cs for i - 1,2

*Since this measure is never smaller than 1, we are interested only in local
maxima.



By similar reasoning, we find cos ai < - .for i 34. This is illustrated
S

geometrically in Figure 8.

The second order terms for (eq. 13) are

(A+2  2 2C~ + 2A a2 cos [e162)

Considering the various cases we find that we have a maximum except in the

case when ai and o lie on the dashed lines on the same side of the chord,

in which case A i(S/c) = 0 for 4i = Aj, (ij) E {(l,2),(3,2),(3,4),(l,4)}.

This is the result we would anticipate intuitively. When (ij) E {(1,2),

(3,4)) both C and S change proportionately to Ai = A. For

(ij) E {(3,2),(l,4)} 'both C and S remain constant if A, = Aj. (See

Figure 9.)

A 4A
c) A/S2: Setting the first partials to zero yields sin oi 

= S.

Further analysis is not given due to the cumbersome expressions and the

poor experimental results.

d) Finding negative minima of A to locate intrusions: The conditions

under which we will have a negative minimum for A are quite simple, 
and

can be expressed for any shape, smooth curve or polygon, by the 
statement

that the curve in the immediate vicinity of the chord endpoints 
must lie

to the left of the chord. Referring to Figure 1, if we take a displacement

ASi from the point defined by s i (i=1,2), then for As, small enough, the

point si + as i must lie to the left of the directed chord. Several such

cases are illustrated in Figure 10.
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5. Conclusions

From the foregoing analysis we can anticipate some unusual and per-

ceptually "unnatural" results. This is borne out by the experimental re-

sults on three shapes shown in Figure 11. In the experimental results,

chords were suppressed if the segment they cut off exceeded a certain per-

centage of the total boundary perimeter, or if they cut through the object

boundary.

For example, referring to Figure 6, we can see that a polygon with

one side lying outside the indicated range will not be segmented, no matter

how sharp the corners. (Observe, however, that given two points on the

shape, there are two directed chords passing through these points, and al-

though one chord may not be a segmentation chord, the other may; see Figure

12a.) Similarly, on a smooth curve, a protrusion or an intrusion may not

be detected, no matter how perceptually obvious, because there is no chord

for which el and a2 meet the necessary conditions. For example, we can ob-

serve this effect in the experimental results on shape 2 in Figure 11.

Here, the slopes on the sides of the concavity did not meet the criterion

tan e a 4 for the measure A/C2, but did meet the criterion tan e 2A

A C c
for /c. Thus we can see that we can, for example, have a large convex

lobe which will never be detected by A/C2 because the slope of the sides

never equals 4A/c2 (Figure 12b).

Consider the situation which occurs on part of the E shape (Figure 12c).

For the chord . to be a local maximum of A/C2, we must have tan e = 4A/C2.
W 1 2 2 2

For this piece of shape, tan e ,A LW + xW and C2  + so wex YW~xad = x sw
find we must have x - -2L + AL+W , and since we cannot have x < L,

X PVV A 2
x L / +W - 2L. A similar analysis for /C yields x = L. Therefore,

2L



(1)

(2)

(3)

Figure 11. Results of applying the methods described in

this paper to three shapes

(a) The shapes



P, (2)

(3)

Figure 11, continued: (b) Maxima of A/C 2



(2)

(3)

Figure 11, continued: (c) Maxima of A/C



(2)

(3)

2Figure 11, continued: (d) maxima of A/S



(2)

Figure 11, continued: (e) Maxima of S/C



(2)

(3)

Figure 11, continued: (f) Negative maxima of A



(a) P2 PChord 7P1 2-will not segment the object, but

chord P2P1i will.I

(b) protrusion for which tan s < 4A

if this distance is too small, there
A4%.no segmentation here.

(c) P : 1
L

Figure 12.



whether or not the tip of the E is segmented by chord / depends on the

location of the upper left corner (Figure 12c). Again we have a perceptually

obvious feature whose segmentation depends in a critical way on a dimension

which seems to have little perceptual significance. (In fact, narrowing the

vertical portion of the E would tend to make the horizontal protrusions

even more obvious.)

In summary, the principal flaw with these measures is that whether or

not segmentation is achieved depends on certain features that have little

perceptual significance. Thus we can have a variety of shapes which appear

to a human observer virtually identical, and yet which yield very different

results in segmentation. Of course, any method of segmentation will have a

certain cutoff, or threshold in its behavior. However, we expect to find

such thresholds occurring in cases which represent a transition from one

perceptual situation to another (such as the transition from corner to

straight line as the angle of the corner approaches w). In many situations,

the thresholds for these methods do not correspond to any such perceptually

significant transition. Furthermore, we should note that these techniques

are also subject to problems with noise and digitization, just as is the

case with more conventional techniques. By using a global measure we do not

avoid the need for smoothing operations or other methods for locating noisy

peaks. For example, the maximum associated with the part of an E shape il-

lustrated in Figure 12c tends to be very gentle, and is easily obscured by

noise. In some cases the programs failed to locate this segmentation chord

for this reason.
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